Wasserstein distances for discrete measures and convergence in nonparametric mixture models
نویسنده
چکیده
We consider Wasserstein distance functionals for comparing between and assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We explore the space of discrete probability measures metrized by Wasserstein distances, clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions. The convergence in Wasserstein metrics has a useful interpretation of the convergence of individual atoms that provide support for the discrete measure. It can be shown to be stronger than the weak convergence induced by standard f -divergence metrics, while the conditions for establishing the convergence can be formulated in terms of the metric space of the supporting atoms. These results are applied to establish rates of convergence of posterior distributions for latent discrete measures in several mixture models, including finite mixtures of multivariate distributions, finite mixtures of Gaussian processes and infinite mixtures based on the Dirichlet process.
منابع مشابه
Convergence of latent mixing measures in nonparametric and mixture models
We consider Wasserstein distance functionals for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using v...
متن کاملConvergence of latent mixing measures in finite and infinite mixture models
We consider Wasserstein distances for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using various iden...
متن کاملConvergence of Latent Mixing Measures in Finite and Infinite Mixture Models By
This paper studies convergence behavior of latent mixing measures that arise in finite and infinite mixture models, using transportation distances (i.e., Wasserstein metrics). The relationship between Wasserstein distances on the space of mixing measures and f -divergence functionals such as Hellinger and Kullback–Leibler distances on the space of mixture distributions is investigated in detail...
متن کاملIdentifiability of Nonparametric Mixture Models and Bayes Optimal Clustering
Motivated by problems in data clustering, we establish general conditions under which families of nonparametric mixture models are identifiable by introducing a novel framework for clustering overfitted parametric (i.e. misspecified) mixture models. These conditions generalize existing conditions in the literature, and are flexible enough to include for example mixtures of Gaussian mixtures. In...
متن کاملOn strong identifiability and convergence rates of parameter estimation in finite mixtures
Abstract: This paper studies identifiability and convergence behaviors for parameters of multiple types, including matrix-variate ones, that arise in finite mixtures, and the effects of model fitting with extra mixing components. We consider several notions of strong identifiability in a matrix-variate setting, and use them to establish sharp inequalities relating the distance of mixture densit...
متن کامل